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THE SHADOW OF A STRAIGHT EDGE*
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INTRODUCTION

In his anniversary address on 30 November 1935, the President of the Royal Society
paid a tribute to the work of HEcrorR MunrRo MacpoNarp. In the course of his
address he made particular reference to MacponNaLD’s solution of the difficult, and
analytically very attractive, problem of diffraction by a prism, perhaps better known
as the Wedge Problem.

A few years ago the author of the present paper, who was much impressed by the
work of MacpoNarLp and had the privilege of corresponding with him, made some
notes upon this problem and upon an associated problem of particular interest. Arising
from these notes, which were recalled upon reading the President’s address, certain
ideas, which would appear to be of a fundamental nature, have been developed to
form the subject of the following communication.

The problem of the half-plane had been previously treated by two distinguished
mathematicians, but the first complete solution of the wedge problem was given by
Macponarp. The two mathematicians were PoIiNCARE and SOMMERFELD. Sub-
sequently to the publication of MacpoNaALD’s work, BRomwicH published a paper
which gives a slightly more general treatment of the problem. References are given
at the end of the paper.

The importance of the problem, from the physical point of view, lies in the analytical
verification of FReSNEL’s theory. In this the authors quoted have been brilliantly
successful, but none of their papers is of recent date and the problem is still full of
interest and difficulty.

The problem of a half-plane which is not infinitely thin was dealt with by the author
in 1930.
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36 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

The methods of MacpoNaLD and BromwicH are developments of the method of
images, as distinct from the method of Poincar¥ and that of SommERFELD, who for
the half-plane introduced functions of period 4.

It is remarkable, however, that no writer has given due consideration to the geo-
metrical shadow, which is the most fundamental feature of the problem. If one pro-
ceeds far along the shadow from the diffracting edge, a point is reached where the
phenomena on either side are independent of the properties of the wedge so long as it
does not transmit the waves falling upon it.

The full significance of the geometrical shadow is explained in the analysis which
occupies the first section of the paper.

The second section deals with some points in the analysis when the incident wave
is plane.

The third section considers the case of total reflexion in the presence of diffraction
by a straight edge, in which the geometrical shadow plays an important part. Not-
withstanding its bearing upon the interesting problem of the superficial wave in total
reflexion, there does not appear to have been any previous treatment. The superficial
wave was considered by Stokes and KerLviN, who called it the “clinging” wave,
and others, and also by the author in 1926.

In the fourth section the result of finite thickness in a half-plane is investigated,
showing that the effect upon the shadow at great distances is negligible.

In the fifth section the effect upon the shadow caused by bringing the source close
to the edge is considered. .

The general method of solution described in the first and second sections is not
dependent upon the polarization, the plane of polarization being usually defined as
the plane containing the magnetic force while the electric force is perpendicular to it.
Throughout the paper, for brevity, it is assumed that when the incident wave is plane
the electric force is parallel to the edge of the screen or wedge, while, in the event of
the source being a Hertzian oscillator, the axis of the oscillator is parallel to the edge
of the screen.

In the sections so far enumerated the incident wave possesses a geometrical shadow.
This is naturally the case of greatest importance on account of its connexion with the
fundamental theories of FRESNEL and StokEes. But to complete the wedge problem
all cases must be included. This extension is straightforward when the wedge is per-
fectly reflecting. When, however, the wedge is perfectly absorbing difficulties arise
when the incident wave does not possess a geometrical shadow. The difficulties exist in
MacpoNALD’s theory of absorbing bodies which will be discussed in the final section.
In the first five sections these difficulties do not affect the argument, but nevertheless
a statement of MACDONALD’s theory is most conveniently given here.

“ A perfectly absorbing body may be regarded as a body which is incapable of sup-
porting either electric or magnetic force. Hence if C is the electric current distri-
bution on the surface of the body when it is supposed to be perfectly conducting, and
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E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE 37

C’ is the magnetic current distribution on the surface of the body when it is supposed
to be incapable of supporting magnetic force, the superposition of these two distri-
butions gives the electric and magnetic current distributions on the surface of the body
when it is perfectly absorbing.”

Suppose that the electric force E, is parallel to the edge of the screen. Then the
solution for a perfectly conducting screen may be put in the form

E, — f{cosg (5—00)}— f{cosg 0+ 50)}.

This expression satisfies the boundary conditions because it vanishes over the two
faces of the screen corresponding respectively to § = 0 and 6 = w. If the screen is
incapable of supporting magnetic force, then JE,/df must vanish over the faces of the
screen. Under these circumstances the solution is

E, — f{cosg (a—ao)}+ f{cosg 0+ 00)}.

Hence MacpoNaLD’s theory implies that the solution when the screen is perfectly
absorbing is

E, — f{cosg (0—00)}.

The angle v of the wedge or screen is the external angle. In the case of the half-
plane w = 27. All wedges may be considered by giving o all values between 0 and 27.

1—THE POINT SOURCE

The problem before us in this section is one in which an origin of co-ordinates is
taken upon the diffracting edge and a source at a finite distance from the origin emit-
ting a system of waves. Starting with a solution of period 27 it is proposed to derive a
solution of the wave equation of period 2w and to consider the limits to which the
components of the latter solution tend as the source is brought closer and closer to the
origin.

In the first place a general theorem is required. In terms of cylindrical co-ordinates
the wave equation is

0%

dr?

Lop L% 0% 1%
e TR T e T

We commence with a solution of the wave equation of period 27 in ¢, which is assumed

to be expressible in the form
F{r,cos(0—0,), z, t}. (1)

From (1) may be derived the solution

f:F{r, cos(u—+t¢), z, t} f(u) du, (2)


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

38 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

in which ¢ has been written for §—6,, a and b are arbitrary constants, and u is inde-
pendent of 7, 0, z, and ¢
Let u+¢ = v. Then (2) may be written in the form

b+e
f F{r, cosv, z, 1} f(v—e) dv,
ate

which is equivalent to

[+ [ Tre oz -

If the function fis periodic with a period 27, and if b = 7 and @ = —, then

J‘bﬂ-: J*(H-e
b a

Hence, if fis periodic with a period 27,

f” F{r, cosv, z, t} flv—e) dv (3)
is a solution. !
The variable » thus introduced may be complex and when this is the case it is con-
venient to denote it by {, where _
{=E+u.

Consider, therefore, the expression

f Fir, cost, z, £ f(L—¢) de. (4)

If both the upper and the lower limits of a contour in the {-plane are infinite and if
the integrand of (4) vanishes at each of these limits, then, whatever may be the period
of the function f, the integral (4) taken round the contour between these limits is
a solution of the wave equation.

It is clear that f({—¢) may be replaced by f,({+¢), where f; is some other function
consistent with the above conditions. Hence, upon writing

=€) +/o(E+4-€) = £(0),
[P, cost, z, a0 at (5)

is a solution.

In order to determine a suitable contour, the solution when no wedge is present
must be known, so that a form can be given to the function F. Also an expansion of
period 20 must be adopted for the function g({).

The function F is chosen so that it represents the solution of the wave equation for
waves diverging from a point source S (fig. 1). The section of the wedge is AOB in the
figure, O being the origin of co-ordinates. The distance of a point P from $ is denoted
by R. The co-ordinates of § are 7y, 6, 0, and the co-ordinates of P are r, §, z. The plane
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E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE 39

containing 0Q the continuation of SO, and bounded by the edge of the wedge is the
geometrical shadow.
The required solution is given by

Folei—R)
R b
and R? = r2 473 —2rry cos (0 —0,) + 22

If the form of the function F, is arbitrary, a very general solution of the problem may
be obtained. It will, however, be assumed, as was done by MacponaLD, that the
source is sending out a train of waves continuously so that a steady state has been
reached. Thus it is sufficient to consider one of its harmonic constituents. The function
Fy(ct—R) is accordingly replaced by

ik(ct—R
Aez ¢ ),

where A, = 2n/k, is the wave-length of the particular constituent. This function may
be used to develop the theory of the Hertzian oscillator.

Fic. 1

It is convenient to commence by taking 1/27 as the unit of length, so that £ = 1,
for £ can be restored at the end of the analysis. Writing, therefore,

p? = r?+r}—2rrycos {+ 22,

we have to put F{r,cos{, z,t} = A4 %{) ¢, (6)
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40 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

The function to be discussed then reduces to

e7ip
f (&) d¢, (7)
p
and it is necessary to consider this function as a function of {.

In the {-plane (fig. 2) there is a branch point of the integrand of (7) at P, whose
co-ordinates are

P22 52
£=0 and nzcosh”l{i‘—’j_~~}.
2rr,
A n D
(5}
g
=
o
i P
E F
B\\\___//O\\\_»‘//C f‘
G H
Fic. 2

The corresponding branch line is taken to coincide with the imaginary axis from
P to +o. There is another branch line, which is the image of this in the axis of &,
extending from the image of P along the imaginary axis to —oo. The branch lines thus
chosen enable us to determine a contour at every point of which the integrand is single-
valued. When the period of g({) is 27 the path of integration is one passing from B to C,
where B is the point (—, 0), and C'is the point (4, 0). This path may be represented
provisionally by BEOFC, and it must pass through O because points infinitely close
to the source correspond to positions of P (fig. 2) and its image infinitely close to O,
and the path must not cut the branch lines. When the period of g({) is 2w the path
may be extended vertically from B to 4 and from C to D, where 4 and D are at infinity.
In this way the integral taken along the path ABEOFCD is a solution for any value
of w, which reduces to the integral taken along the path BEOFC when w = 7. The
portion AB+CD of the path is thus determined, for it will presently be clear why it is
taken entirely in one-half of the {-plane. But the remainder BEOFC is not deter-
mined, and there are no means at this stage available for its determination.

The integral taken along the path AB+CD cannot be assumed to be a solution,
but it is possible to make it so by suitably restricting the function g({).
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E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE 41

We now require a definition of diffraction which is both simple and comprehensive,
and we shall assume that the integral taken along the path AB+CD satisfies this
definition because it vanishes when the period of g({) is 2, this period corresponding
to the absence of the wedge. The simplest and most fundamental property possessed
by a large and important class of diffraction phenomena depends upon the difference
between ultimate effects on either side of the geometrical shadow. In the case of a
source of unit strength this difference amounts to | ¢7#/R |, since the ultimate effects
inside the shadow vanish. We may assume then that under certain circumstances this
property is possessed by the complete solution of our problem.

Basing the definition of diffraction upon this property we make the assumption
that circumstances exist under which the integral taken along the path AB+ CD tends
to the value (14 M) ¢7*#/R outside the geometrical shadow and to the value Me¢=%/R
inside. The circumstances under which these conditions exist with reference to the
integral under consideration have to be determined, and it will be shown that we are
then led to the solution of the problem by means of Fourier’s theorem. That there
must be a close connexion between this theorem and diffraction is almost obvious, but
the actual analytical relationship is not so obvious. If under the circumstances we
can make the integral satisfy the conditions outside and inside the shadow by means
of the function g({), we must then endeavour to specify the path BEOFC and the
constant M so as to satisfy the conditions of the problem, and thus finally the solution
we are seeking will be the integral taken round the path ABEOFCD.

We proceed to show that g({) is uniquely determined by these conditions. We have
for this purpose to consider that part of (7) which is given by

[[7+[7]5 o wh+eana -

Since the path of integration has been taken entirely in the upper half of the {-plane,
and since f and f; are assumed to be functions of period 2w, g({) may be expanded in
the form of the trigonometrical series

n=o T .nmT
1 i ({—¢€) 1 i— ({+e)
> [ha,ds 0 gp,8 0 0], (9)
n=0
C . . no® My
which is equivalent to 2ev°C,
n=0
nm . nm
where C,=A,cos—e+B,sin—e,
W w

and 4, and B, are linear functions of a, and 4,. This is permissible since at all points
of the path the real part of inn{/w is negative. Every term of the series vanishes
when 7 = oo, except the term in which z = 0. This term may, however, be included,
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42 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

for ¢=i#/p vanishes at the infinite points of the path. Thus, denoting (8) by ¢, we

may write
b — U f] lp"zwcewédg, (10)

provided that the series is convergent.
Now along AB { = —n-1y and along CD { = +n--1y. Hence

¢ = i (v —e Cfooe:ﬁe ng”dﬂ
where p3 = 1241} 2rrycosh g+ 22
and is positive at all points of the path. Thus

nm? ~ip1

¢:——2 QSln——Cf

n=

ooy, (11)

and obviously vanishes when v = 7.
In (11) itis in the first place necessary to consider the integral

e“l/)] _nm
_Dn fony —_e ]d”
0o P
O _ (a2t b? 77%‘
Now f e (m ~ xz>dx — 6‘2010)
0 2611

a result which holds for real positive values of af and 42, or for purely imaginary values.
If we write, therefore,

a, =t (fz +27707+22+cosh 77)
and b = Li4(2rry)%,
then 2a,b = ip,
and 2a, = (%;E) Py
Hence (L)t (Z)% e;’:’l f:e—i(7+cosh77)x2 g;‘idx
where y = T;:rj Z2.
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E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

Carrying out the integration with respect to # we have to consider

® _ix2coshyp-"Ly
E =] ¢ © 'dy.
0

Let ix2 cosh77—|—%7—rry =0.
| _| .4
Then E,=—|e p A L = -
g 1
so that p = ix?sinh f;—f—%’,
dp  1dp
then W == —F 877 )
¢y 1d% 3 (dp\?
o= ar i) o
_o|dn  d%
Hence E = [ { +da2+ }]n=0
3 5
= e“"xz[ﬂ——ixz(ﬂ) ——3x4(£) — :I
n nm n
| \} — x2—i 9 . 3
Thus D, = (ﬁ) f ¢ DY g f)——zxz(ﬁ) - :ldx
e nm na
Let us now write dy+i=a
and p =fwe—a2x2_—2a’x =T p2a,
0 2a
—azg2- Y
Then, writing P =|ce ¥x2 dx,
0
1dP
we have P = ~5ada
— ﬁé —2ab
2aa ’

retaining only the lowest power of 1/2a. Likewise, writing
0 _ o0 b
p, =f ¢ e xtd,
0

1 dP,

we have sz—-z‘&%

2
7272 (b) ¢~2ab

Vor. CCXXXVIL—A
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44 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

retaining again only the lowest power of 1/2a. Now

b (z”o)“’
a (rP4ridz2
H.___Q_ A, }_.
7,

Hence if the source comes very close to the origin so that r, becomes very small, both
1/2a tends to vanish and /a tends to vanish. This will also be the case if z becomes very
large. Under these circumstances powers of w/nm above the first in D, may be neglected
and in the limit, as r,— zero,

Dn:( 21 )271 p2ab @

mr,) 2a ni
o _1_ g—lRO _Cli
R, nm’
where R3 = 121+ 22+ 2m7.

When 7 = 0, C, = 4,, and the factor sinnn?/w in the first term of the series for ¢ ex-
pressed by (11) vanishes whatever the value of w. Hence in the limit (11) reduces to
¢ iR 2pnz>1 . nm?

Ry w5 o O (12)

¢:__

Let us seek to satisfy the definition of diffraction with the series obtained by putting
nm
C,=4,cos 0o

so that in the first place we have to consider

zRO[M-Q"EOOIA smﬂcosﬂ’e] (13)
w1 w
The expression within brackets in (13) is a Fourier’s series of cosines, but the first
term, corresponding to n = 0, is absent. It represents the same function of ¢ in the
interval 0 to w as it does in the interval 0 to —w. The condition to be satisfied is that the
expression within brackets in (13), which may be denoted by S, should have the value
1+ M outside the geometrical shadow and the value M inside.

The interval within which § must be capable of representing an arbitrary function
is the external angle of the wedge. For if in the extreme case the source were situated
on one face of the wedge, $ would require to be capable of representing an arbitrary
function in that interval. Hence w is the external angle of the wedge.

Now if § has the value 1+ M when

0<e<m,

and the value M when T<E< W,
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E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE 45

$ may be expanded in the form

S = M+ + Ewlsmﬁlcosv—e (14)

Comparing coefficients of (13) and (14) we must put
M= —7jv and wd,=—

Thus the cosine series determines M uniquely.

At first sight it might be concluded that, if the sine series in C, were added, any
arbitrary constant value might be assigned to M, for such a series may be found which
possesses any constant value in the interval 0 to w. This, however, is not permissible,
for the sine series is discontinuous when ¢ = 0. Hence

. +i7r(§+e) im(£—e)
Writing t=¢ o and u=¢ o |,

1 1 1—ut

:A°+%_”2Z)1—(u+t)+_mf
. siang

A_|_ +— L@

"2 2w @l e .

€O —2— 08~

Now, referring to fig. 2, suppose that AB were extended vertically downwards to
infinity at D" and that DC were extended vertically downwards to infinity at 4’. On
account of symmetry the path A’'CHOGBD’ may be taken as exactly equivalent to
the path ABEOFCD, and in order that this may be the case we must put

4y =—1/20.

It is clear, upon inspection of g({), that the path D’BGOHCA’ is inadmissible. The
integral taken along the path 4B+ CD is then a solution, for since now

gl) =—g(—0),

a path BEOFC can always be found along which the integral vanishes. Hence there is
obtained for ¢ the solution
P

P = [f f]?w p) 7C o ﬂedc’ (15)

COS — —COS —


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

46 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

which, when the source comes close to the origin, has the value

(1-5) e;:° (16)

outside the geometrical shadow, and the value

T e~ iRo

“o R, (17)

inside the shadow.

The function g({) is thus uniquely determined by the condition that, when the source
approaches very close to the origin, the value of ¢ outside the geometrical shadow
differs from its value inside by ¢~%/R.

The remainder of the contour may now be specified. Taking it as the path BEOFC
(fig. 2), since g({) = —g(—{) the integral taken along this path is the same as the
integral taken round the loop OFCHO. Now in problems in which a geometrical
shadow exists @ must be greater than 7, and therefore when ¢< 7 the loop contains
only the simple pole { = ¢ of the integrand and no other singularities.

Again, near the source that part of the integral contributed by the loop becomes of
greater and greater importance, so that the solution satisfies the conditions near
the source. It is not difficult to show that the complete solution is continuous across
the geometrical shadow, and it clearly reduces to the solution for a point source in
the absence of the wedge when the period is 27. The solution obtained is applicable to
an absorbing screen and is in accordance with MAcDONALD’S theory of absorbmg
bodies.

The most important case of a diffracting wedge is the half-plane, which provides
an interesting verification of the theory. In the case of the half-plane

W = 2,

and therefore (15) becomes

T L

Transform { by the substitution
cos 3{ = tcos e,
where ¢ = u+1v.
In the first place let e< 7, so that cos ¢ is positive. Thus when

{=—m+i0, =-+i0

and when {=-+m+io, ¢=—1i00,
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E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE 47
~io gio o
Hence ———l:f f ] o =1
e~ip 1) )
- 4mh_ﬁw it—1 +w+Jﬂ

1 [f=eir 1
_%L pﬂ+lﬂ

Substituting for cos { in p we have

p? = R2+44rrycos® $e(2+1).
Writing a = 2(rry)¥| cos ke |,
it can be shown that the above expression for ¢ may be written in the form

i e Kfi (R u?)
b= ] e

where K| is the modified BesseL function of the second kind and first order. Finally,
substituting

w = Rsinh ¢,
¢ =2 | Ki(iRcosh ) dy, (19)
Yo
2
where sinh ¢, = rro)% | cos %e|.

In like manner when cos ¢ is negative, that is when ¢ >,
§=—= f “K,GR cosh ) dy, (20)
Yo
. 2
where sinh ;= b (rro)% | cos Je .

Now the contribution of the loop to points outside the geometrical shadow is —e &/R,
which is equal to

L f j:Kl(iR cosh ) dy.

Hence for the complete solution outside the geometrical shadow we have

e—zR

oz ' K(chosh;ﬁ)w—-——f K, (iR cosh /) dy.

The complete solution inside the shadow is given by (20), which is equal to

L (™K. (iR cosh y) dy.
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We may therefore write as the required solution

=" | " K, (iR cosh y) dy, (21)

—®
2
where sinh ) = (rro) cos 1e,

for the integral is now continuous with e. It will be seen that in the expression for
the source with which we started we have to put 4 = —1.

If on restoring the factor £ we substitute £R for R, then corresponding to the source
+¢7#k|R we have the solution

+’k " K,(ikR cosh ) dyp. (22)

The foregoing analysis shows that the integral taken along the path AB+ CD has the
effect of making the solution continuous across the geometrical shadow.
The expression (22) was obtained by MACDONALD in an entirely different manner.

2—THE INCIDENT PLANE WAVE

When the incident wave is plane the solution for a half-plane can be derived from
(22) by supposing that the source moves off to infinity. In the case of the plane wave,
however, whose front is parallel to the diffracting edge of a half-plane, the problem
is the simplest in the theory and can be treated by a special method. The method
involves the use of the parabolic substitution and leads to a partial differential equation
which it is worth while to consider. LamB has used this substitution in his “ Hydro-
dynamics” in a rather different manner, and he has discussed only the case of per-
pendicular incidence. The wave equation is in two dimensions and may be written

Py 1ay 1Py 1y
a7 o T eae e e = (25)

in the form

Let the incident wave be denoted by

eik(rcos(f)—%)-rct}
’

and let us write 3/, — eik{rcos(ﬂ—ﬂo)-l—ct}g/).

Then ¢ must satisfy the equation

Pp 109 1 0%

5;2——'_7 dor 2062

+L 70 ok ljcos(a 0,)— —@sm(e 0)]

a0

If we transform this equation by the parabolic substitution
x = (2ikr)¥cos (0-0,),

y = (2tkr)¥sin 1(0—0,),
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we obtain a simple partial differential equation which possesses elementary solutions.

The equation is
77 0 0
PR Rl MR PR

Let ¢:XY>

where X is a function of x only and Y is a function of y only. Then X and Y satisfy the
equations

2
e (24)
azy dy

and P ydy+2 nY = 0. (25)

We shall consider those solutions in which #» may possess all integral values including
zero. The independent solutions of (24) are easily found to be

2 3 — —
X, — ao[l_l_Qn 2+2n(n 2) o) 2nln 62')(n 4)x6+...:|,

X, — al[x+2(n3~!1) x3+22(n———15)! (1=3) (5 2(n—1) (7;!—3) (n—5) x7+...:|.

Similarly the independent solutions of (25) are

Y, — b, [1____ 2272 Z, 2)y4 2372(72—?') n—4) Yot :|
nl—‘b[y“‘ !1) 3.4 2%(n 15)!(n—3)y5m23(n—1) (7,’7'—3) (n—5)y7+...].

The components X, and Y, of the function

¢ XnO YnO
both terminate when # is even.
The components X,; and Y, of the function

¢ nl nl

both terminate when 7 is odd.

All such solutions for ¢ must, however, be discarded, since they are of period 27.
Now we require a solution which changes sign as we cross the geometrical shadow and
which possesses a period 47. Thus the only permissible solutions for ¢ are

¢ an KZO
Consider now an asymptotic expansion for X. Let
X=¢*P.
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Then P satisfies the equation

2
oo i

This equation possesses the solution

P= col:x“‘”“’—-~~~————(nJr 1)4(n+2) am ) :|

Hence X= coe"‘z[x“"“’ _{o4 D) (n+2) 1)4(n+ 2) s + :l .

The remaining condition to be satisfied is that ¢ should vanish to the correct order
at infinity, and this is the case when n = 0. The required solution for ¢ is therefore

¢ = (Xm +X00) Yoo>

Xy, and Y, being constants.

2 2.2.3 2.2.2.3.5
NOW XOl :al{x——ax3+———5—~!——x5f———ﬁ7—!——-x7+...}
X
=a f e~ du.
0
X
which is equivalent to the asymptotic expansion.
Since x = (2tkr)¥cos $(0—10,),
the solution which we require is clearly
. (g \F kP cosHO—-6,)
§/’ — ezkrcos(0—~90)+zkct(~) J e~ dy. (26)
) J-w

As the upper limit —+o0 i —> gikr cos(0=00)+iket,

The formula (26) is the solution for a perfectly absorbing screen and is in accord-
ance with MAcpoNALD’s theory of absorbing bodies as in the first section. In the
final section we shall have occasion to criticize MacpoNALD’s theory, and it will be
necessary to replace it by another theory. The two theories lead to precisely the same
result, however, when the incident wave possesses a geometrical shadow. It may be
remarked that the solutions of period 2 for other values of z which terminate provide
a series of new solutions which are of some importance, but outside the present dis-
cussion.
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3—DIFFRACTION AND TOTAL REFLEXION

It is proposed in this section to consider a problem which will enable us to discuss
the development of the superficial wave in total reflexion.

A plane wave is incident in the direction /0 in a medium A, which is separated
from a medium A, by the plane boundary 40B. One-half 40 of the plane boundary
is covered with an infinitely thin sheet of perfectly reflecting or perfectly absorbing
material. It will be assumed, in accordance with our plan, that the electric force in
the wave front is parallel to the edge of the sheet, which is taken as the axis of z.

A A

> Take an origin O on the edge and let 04 be the axis of x. The axis of y is supposed
< g ) y PP
> E drawn vertically upwards. The suffixes 0, where they occur, refer to the medium A,
2 0 and the suffixes 1 to the medium M,.

)
= 0O
O
=w
- 12)
5z
2
gF . .
gE° °
o(h
=z
=<
=y
O = A B

M,
S
Fic. 3
Supposing in the first place that the sheet consists of perfectly absorbing material,

< o we shall explain and consider the following expressions based upon the formula (26):
_ ~ Ieikovot,
< .
S E RelkoVot,
cd a Seilelt,
RO I\ [ (2kor)t cos (00
E @) where I — QgikOVCOS(Q“QO)(%)EJ ) Ecost -

v — 0
- N1 —(2kgr)E +0,
§% R — QAOeikorcos(0+00)(%)%f (2Zhor)* cos 1(6+0 )e—-iuzdv’
I— -0
=

(GRS y 3 —01

%2’ °© S = QAleiklrcos(ﬁ—ﬁl)(%)%f<2klr) cost0=0 )e~iv2dv-
o —o0
EE

Vor. CCXXXVII.—A -
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52 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

The line OR is the geometrical shadow of the wave which is partially reflected at the
boundary OB between the two media. The line OS is the geometrical shadow of the
wave which is refracted at the boundary OB between the two media. In the medium
M, the reflected wave R tends to vanish when

0 <m—0,.
In the medium M, the refracted wave S tends to vanish when

0>m+0,.
In the medium M, we shall write for the electric force

Zy = (I+R+-Ip) e,
and in the medium A - Z, = (S+F) e,
The functions F, and F; have to be determined by the conditions at the surface of
separation OB, and by the condition that they must vamsh at infinity.
We shall make use of the formula

— 0

% r2kr)icos g . . n=0 n n
28”‘”605975(”) f e~y = eikrcosd | 9 > ZZJQ(/W) COS‘2‘¢’ (27)
n=1 2

where J, is the BesseL’s function of half-integral order.
2
The summation is to be carried out for all positive integral odd values of n only
(BATEMAN 1915).
Thus, from (27), we may write

0

I = eikgrcos(ﬁ—@o)_{_Q i % ( 01’) COS = (6 7 )

n
2

R= Ao[eik07003‘9+‘70’+2 E 12.]( of) cos—(ﬂ 2m+-0 )]

S - All:eiklrcos‘ﬁ‘f’l’ +23 i, (kyr) cos s (0 00] .
n=1 2

For the function £, we shall write

:OOTL

n . n
z 2 J g( ){ocncoséﬁJrﬂnsméﬁ},

the summation being carried out for values of n = 1, 5, 9, etc.
For the function F| we shall write

n

niw 12, (kyr) {yn cos ™08, sin - ﬁ} ,
5 2 5

n
2

the summation being carried out for values of z = 3, 7, 11, etc.
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The reason for using the suffixes 1, 5, 9, etc. in F, and the suffixes 3, 7, 11, etc. in
F, will be apparent presently.
Since the frequency in the two media must be the same, we must have

koo = k7.
In order to satisfy the boundary conditions over the surface of separation OB between

the two media when the electric force is at right angles to the plane of incidence we
must have

0Z, 0Z, _
oy and Z,=Z2,.

These conditions have to be applied to the expression /+ R+ F; in medium M, and to
the expression §+ F, in medium M,. From the first parts of these expressions we must
have, when 0 = 7,

kycosfy =k cost; and 1+4+4,=4,.

Whence follow the well-known results, satisfied in this case at distances upon OB
remote from the origin,

~ 2sinf,cos b,
L™ sin (0,+46,)
and 4y =4,—1
_ sin (0,—0,)
sin (0,+6,)°

The conditions are completely satisfied over the surface OB if in addition

2 =1,5 2
ST J, (K r){(1+A0) sin 0} "5 i3, (k, 7){A sing ‘9 +3} (29)
w37 3 n=3,7 2
S i, (ko) m {(1 ) cos &0+ “n}zniw ALY ”{A‘COS%‘}’ o
a5 3 2 n=1,5 2 2
3 a0~ g corg o] = B Rt
n<3,7 2 neh12

The equations (28)—(31) have to be satisfied for all values of 7.

If we had decided to consider a perfectly reflecting screen, that is a screen which
cannot support electric force, we should have to subtract from Z, R, and § respectively
expressions I, R’, and " which differ from 7, R, and § only in that the signs of 6, and
0, are changed. All the conditions in this case would be satisfied by retaining only the
terms with coeflicients £, and 4, in F;, and F;.

7-2
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54 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

If the screen is supposed incapable of supporting magnetic force we should have to
add I, R’, and ' respectively to /, R, and S. All the conditions in this case would be
satisfied by retaining only the terms with coeflicients «, and y, in F; and F;. Hence
MacpoNALD’s theory of absorbing bodies applies. The reason for this is the existence
in every wave of a geometrical shadow, and the explanation along with that of the
results of the previous sections is given in the final section.

The identities (28)—(31) require for their elucidation the consideration of the
equation

Si2J,(kyr) B, = Zi2J,(k,7) C,. (32)
2 2

NS

P p? P |
Now ulp) = zgn(g){lﬁz n2) T2 A (w2 (i d)
2

and accordingly it is not difficult to write down the relations which must exist between

the B’s and the C’s. If we write
(kolk1)t = A,

these relations are AB; = (),
3By = C,

N(Bs+3B,) = G +30,,

A'(B;+5B;) = Cr+5Cy,

7.9 7.9
/19(B9+~g—35+m31) = CQJF%C;*FQ—.ZCD

9.11 9.11
/111(311+'1§1“B7+"2f'4‘33) - 011+1—2LC7+‘27 Cs,

and the succeeding equations may be written down by inspection.

An especially important and simple case is that in which the primary wave is in-
cident at the critical angle. In this case #, = 0 and 4, = 1. We shall consider this
case in some detail and shall commence by using it to show why the suffixes 1, 5, 9, etc.
must be selected for incorporation in the function K.

It may be noticed that, from our point of view, an important aspect of the surface
of separation OB is that at the critical angle it becomes the geometrical shadow of the
refracted wave.

The boundary conditions must, of course, be satisfied in this case, as in all cases.
Along the boundary OB, since

I+R+F,=S+F,

. d d
it follows that b (I+R+F,) = & (S+F,).
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Now it is clear that this would not be the case when 7 is very small unless we took the
suffixes 1, 5, 9, etc. in F, because all the terms of half-integral order in medium A,
vanish along the boundary except the terms containing §,. Thus if we approach the
origin along a curve which at the origin is tangential to the boundary in M, dF,/dr
tends to vanish because 7 vanishes.

Likewise in medium M, the terms containing a, do not vanish, but if we approach
the origin along a curve which at the origin is tangential to the boundary in M,
dI,/dr tends to vanish because cos 10 vanishes.

The superficial wave in medium M; may now be investigated without much labour.
For this purpose let us return to equation (32) and the subsequent equations, in which
we have to consider those possessing the suffixes 3, 7, 11, etc. '

The B’s being supposed known we have to find the values of the C’s. For the pur-
pose which we have in view a rough calculation shows that it is sufficient to determine
the first five, that is those with the suffixes 3, 7, 11, 15, 19. In order to evaluate C;;
and Cyy we require the two additional equations, which can be written down by
inspection,

13.15 11.13.15 13.15 11.13.15
AIS(BIS—I— 25Bll+ B7+*'§.4.6 B3) Cl5+ Cll+ 2.4 C7+ 2.4.6 039
and
17.19 15.17.19 13.15.17.19
’IIQ(B’9+1 Bl5+ B“+ 2.4.6 7 2.4.6.8 B3>
.19 15.17.19 13.15.17.19
_"09"‘—015*" g Gut 246 Ot 2.4.6.8 Cs-

Now from equation (29), at the critical angle, we may write
B,—2sin 0, and C,=39,

In order to obtain numerical results we shall suppose that the refractive index of
medium A, is 1-5. In this case
cost; 3

cos 0

2
,

so that cosf; = 0-666 when ¢, = 0 and therefore 6, = 48° 10’. Hence we can write
down the values ofsingﬁo for n =3, 7, 11, 15, 19.

From the equations connecting the B’s and C’s it is then found that

3, = 1-90, 85 = 220-20,
d, = 875, 19 = 1286-00.
811 = 56'25,
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Thus, when ¢, = 0,

S F, = 2¢itwreost | 4'S 32T, (k1) cosgﬁJrzﬁ[aSJ%(klr) sin20—8,J; (k,7) sin 30
n=1 2 .

A0y Jap(kyr) sin L0 — 8 s Tas (ky7) sin L1204 8,9 S e (£, 7) sin 12601,

the above values of the §’s being substituted when the refractive index of medium A4,
is 1-5 and of M, unity. |
In the British Association Reports for 1914 and 1916 Tables of the function S, (x)
have been compiled where
$,(8) = J(bms) . T (3).

In the 1914 Tables computations are carried out for integral values of the argument
x from 1-10. In the 1916 Tables the computations are carried out for the values 1-1-1-9
of the argument. These Tables are sufficient to enable us to obtain an approximate
curve of intensity of the superficial wave as it develops from the edge.

When ¢, = 0 and § = 7, upon writing &, = x,

e 20805 .
1 56-255,(x) — 220-208; (x) + 1286-00S,(x) ]
= 2e“"x—-2~i%£~ S(x), say
Jgmx) )
. SN S
Since 7 = ,\/2 1"[\/23

we obtain finally
3 3

52 = [onnt 2 s o e 00

By means of the Tables we have computed from this expression the relative intensity
of the superficial wave for the values

x=1,15,2, 3, and 4,

and from these the accompanying graph fig. 4 has been drawn.

When x = 8 the error is somewhat less than 29%,. For smaller values of x it is still
less, but for x = 4 it is greater. We may note, however, that if the intensity when
x = 0 is taken as unity it should increase to 4 when x = co. Hence we must expect
a rise to take place somewhere, and the calculations have been carried out far enough
to indicate this rise. The most remarkable result is the reduction in intensity at about
one-third of a wave length.

4—THE HALF-PLANE OF FINITE THICKNESS

A difficulty arises in connexion with all problems of diffraction by sharp edges.
The whole theory of wave motion in such problems is based upon the assumption that
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the displacements of the medium are everywhere small. But when an edge is sharp
the solution may make the displacements at the edge infinite, so that the above assump-
tion is broken. Itis only due to the fact that these infinite displacements are confined to
points very close to the edge that the theory, in its application, is but little affected.

Medium M 0

Relative Intensity

OB =% Wave length

Fic. 4—Relative intensity of superficial wave at critical angle.

We shall in this instance consider a perfectly reflecting body, assuming again that
the electric force in the incident wave, which is supposed to be plane, is parallel to
the edge. The object of investigation is the nature of the magnetic forces in the neigh-
bourhood from which the geometrical shadow starts. We shall take as the perfectly
reflecting body a semi-infinite plane which is not thin, but whose thickness is small in
comparison with the incident wave-length.

It is convenient in the first place to consider a transformation first obtained by
HermHOLTZ in connexion with a hydrodynamical problem. The transformation, which
is a particular case of ScHWARTZ’s transformation, is

U= ;(”“X‘i“ex)era

where u = x+iy, y = ¢+1¢ and 0 = a-+iff, @ and f being constants.
If we assume that ¥ = 0 and y = 0 when ¢ = 0 and ¢ = #, then the transformation
breaks up into
x = :-:(1—¢+e¢cos¢),
(33)
y = ;(ﬂ——¢f+e¢sin V).
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In fig. 5, A4" and BB’ are the two sides of the semi-infinite plane. The side 44’
corresponds to ¢ = 0 and BB’ to i = 27. The edge of the plane is rounded off in the
form AOB, which corresponds to ¢ = 0. Let F be the required wave function so that

(V22 F =0, (34)
where V2 = 92/0x2 4 0%/0y?.

N

A §
\
X /y/\o o e
/
B ~
vz B
F1c. 5
. 02F  0%F\ ({04 oy
2
Then, since V2F = { P +8¢2} {( ) F(ﬁx) }
the wave equation (34) transforms into
0?°F  0°F  k%a?
W+W+T(l "f‘€2¢~26¢COS¢>F: 0. (35)
Putting %ef“ = p, equation (35) becomes
GO OF  0°F k%a®  2ka
R 0p+3;/f2+(k2'02+~_~#k cos ) F =

When ka/w is small, the case under consideration, we require a first approximation to
the solution of this equation. This approximation is a solution of

L O02F  OF 02F .
p? J 2'1‘:”(7/) +3¢2“ik P2l = 0. (36)

But this equation is precisely the same as that in cyhndrlcal co-ordinates from which
the solution of the infinitely thin semi-infinite plane is obtained. Hence when the wave
is incident at an angle ,, and the screen is perfectly reflecting, and the electric force
in the incident wave is parallel to the edge, the approximate solution can be derived
at once from § 2.

Calling this solution F, near the edge it reduces to

F— 315 g&n(ka)%gew{cos L — ) —cos (¥ -+ )


http://rsta.royalsocietypublishing.org/

L

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

The function F, is not, however, the complete solution, for we have still to satisfy
the conditions over the perfectly reflecting edge ¢ = 0. We require, in fact, another

solution of equation (36). For this purpose write

F = Rcosny,
so that R must satisfy the equation

@R 1dR 7
g H R R0
Let u= (kp)tR,

then » must satisfy the equation

Pu (D) D) o

We thus obtain for R, by putting z = %, the expression

R Ae é¢ ~ik= e¢

where 4 is a constant.
Calling the second solution of (36) F,, we may write

Fy = e85 eos (i — ) —cos }(§ 1))
Let the electric force parallel to the edge be denoted by £,, then we may write
E, = (F\+F,) ¢

Since E, must vanish when ¢ = 0, we must put

1 . 2
; itm 32
4= J2e +(ka) -
Hence near the edge

E

= ettt (ka)t S sinh 3¢ sin }y sin 3y,

It may be observed that the approximation used in the foregoing analysis involves

the vanishing of (ka)% and higher powers of £a in comparison with (ka)*.

Let us write, for brevity, E, = Bsinh }¢sin 1y.

Now the magnetic forces tangential to the curve ¢ = const. and normal thereto are
respectively proportional at a given instant to dE,/dn and 0E,/ds, where dn is an element

along the normal and ds an element along the tangent. But

0E t?al; g¢ 1B cosh 14 sin 21/f (1 —2¢% cos i +¢2¢) %
B
=4 when ¢ = 0.

Vor. CCXXXVIL.—A
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60 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE
Likewise 0E,[ds =0 when ¢ = 0.
Hence the magnetic force is tangential to ¢ = 0. Let it be denoted by Hj. Then

1 dH, OE, nB
¢ di  0n  4a

| N7 A
— :/_2 6’““”7‘7"(&) 2sin _%_]ﬁo

Finally Hy, = /2. ¢kt=i7(ka) =% sin 4y,

Thus the magnetic force is inversely proportional to (ka)*.
From the second solution, viz. F,, which was obtained for equation (36) it is clear
that the thickness of the plane makes little difference to the phenomena at a distance
from the edge. Hence the properties of the geometrical shadow at great distances are
sensibly unaffected.
The case of the half-plane of finite thickness is of interest in connexion with Mac-

DONALD’S theory of absorbing bodies, and will be referred to in the final section.

5-—THE SOURCE IN PROXIMITY TO THE EDGE

When the source is in proximity to the edge the effects near the shadow at great
distances from the edge assume a noteworthy form. The assumptions are that 7,/R,
and r /R, are small and that kR, and kR, are large, where R, refers to the incident
wave and R, to the reflected wave.

Taking y, and y, as the corresponding solutions, we shall commence with the con-

sideration of y,.
e—ikRo

Now Xo = ;21‘"7?0" +Pos (37)

. 37’; " K (ikR, cosh ) dy.
0

where o
The integrand may be replaced by the first term of its asymptotic expansion, so
that
Vo ;
Py = k%(27TR0) ~% ezznj ¢~ikRocoshy (cosh ) =4 dyf.

0

Let (2kRy)tsinh 3y = .
Then coshy = 1+u?/kR,
2du
and W R @ TR
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Since ¥, is small for the reason that ry/R, is small, «?/kR, may be neglected in the
non-periodic factors of the integrand. Hence

1 . ) uo
e = p—ikRo+itm —iu?
Py W%Roe t jo e~ dy,
with uy = (2kR))*. v,
— L ok )icos 1 (0—0
_RT*)( 170)% cos (6 —0,).
. 1 o a [ ., ,
Thus it follows that Xo= p ¢ "°R°+’¥”J e~ du. (38)
g 0 —w

Now the assumptions are that r,/R, is small and that iR, is large. Thus there is
nothing to prohibit us from making £r as large as we please.

The expression (38), which is in FrReEsNEL’s form, is of interest from our point of
view as providing an illustration of the circumstances under which the definition
of diffraction, adopted in § 2, can be satisfied in the complete solution of our problem.

Suppose that 0—0,=mn—a,
- so that cos 3(0—0,) = sin La.
. 1
If o is small Uy = o°R] (2krry)ta.

Let us choose a small angle «,. Then for a given distance 7, we may, by making the
wave-length as small as we please, that is, by making £ as large as we please, make u,
as large as we please. Hence, by making the wave-length as small as we please, ¥,
can be made to possess the value ¢#%/R; on one side of the wedge of small angle 2«,,
which encloses the geometrical shadow and the value zero on the other side. The
same considerations apply to the solution y, for the reflected wave, which therefore
need not be considered in further detail.

6—MACDONALD’S THEORY OF ABSORBING BODIES

A statement of MAcDONALD’s theory has been made in the Introduction. There
are serious difficulties in the way of its general acceptance.

We shall commence by applying it to a very simple problem, which is a particular
case of the wedge problem.

Let AOB (fig. 6) be a wedge whose external angle AOB is 4m. Let P, be the source,
P, its image in O, P, its image in OB, and P, the image of P, in B'OB. Let us assume
that the source is a Hertzian oscillator whose axis is parallel to the edge of the wedge.

Let S, = ¢ikct=Ra) [R |

8-2
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62 E. T. HANSON ON THE SHADOW OF A STRAIGHT EDGE

If the wedge is incapable of supporting electric force, the electric current distri-
bution C is given by the solution

Sy S, 85— S,

If the wedge is incapable of supporting magnetic force, the magnetic current dis-
tribution C’ is given by the solution

Syt Sy Sy S,

In accordance with MAcpoNALD’s theory, if the wedge is perfectly absorbing the
electric and magnetic current distributions are given by the solution

So‘l'Ss,
corresponding to the source .
A
P
- i/ \
R] - ~ // \ RO
- / \
-7 /
P, ~ S \ P,
/| 8
/
R./ \ R,
B o e e J 8\ © L
7" o t B
/ ' \
/ 1
/ | \
I 1
P, | P,
!
|
|
|
u
i
A
F1G. 6

It cannot reasonably be expected that such is the solution for a perfectly absorbing
material. Let us, however, consider the problem from another point of view. Suppose
that the wedge is incapable of supporting electric force along the face 04, and in-
capable of supporting magnetic force along the face OB. Then the corresponding

solution is
SO_SI +S2*S3-

Again, suppose that the wedge is incapable of supporting electric force along the
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face OB, and incapable of supporting magnetic force along the face OA. Then the

corresponding solution is

For a perfectly absorbing wedge, the solution, since this alternative is quite in keeping

with MAcDONALD’s theory, is
SO_S33
corresponding to the source S,

The theory appears thus to be ambiguous. Let us compare the two results.

Suppose that P, is moved infinitely close to OB. Then P, comes infinitely close to
OB’. Thus MacpoNALD’s solution tends to the result that the face 04 can support
electric force but not magnetic force. On the other hand, the solution S,—.S5 in this
case expresses the condition that the face 04 can support magnetic force but not
electric force. '

Another example may be taken from the half-plane of finite thickness, which has
been considered in §4. For the purposes of the present argument it is sufficient to
write down the approximate solutions near the edge.

If the surface cannot support electric force, the distribution of current is given by the
solution

24 sinh 3¢{cos § (¢ — o) —cos (¥ +¥)}-

If the surface cannot support magnetic force, the distribution of current is given by

24 cosh §p{cos () — o) +cos (¥ + )}

According to MAcDONALD’s theory, therefore, the solution for a perfectly absorbing
body is
Afet? cos (Y — ) -+ e cos (Y + )}

But it is quite in keeping with MAcDONALD’s theory to argue as follows.

Referring to fig. 4, suppose that the faces 4’4 and B’B cannot support magnetic
force and that the face 40B cannot support electric force. The corresponding solution
is

24 sinh }p{cos §( — o) +cos 3+ ¥)}:

If, on the other hand, the faces 4’4 and B’B cannot support electric force and the
face AOB cannot support magnetic force, the solution is

24 cosh §¢{cos (¢ — o) —cos (¥ + )}

If the body is perfectly absorbing, the solution turns out to be, if we accept Mac-
DONALD’S theory,

Afed cos § (¥ — o) —e ¥ cos (¥ + )}

A discussion of these difficulties is out of place here.
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In the case of the wedge problem, however, when the incident wave possesses a
geometrical shadow, the problem of absorption can be treated rather differently, and
it is at this point that the reason for solving the problem by means of the properties
of the geometrical shadow of the incident wave is most easily perceived.

It has been seen that the solution of the problem of the wedge is uniquely determined
for the incident wave by means of these properties.

Likewise, the solution for the reflected wave is uniquely determined by means of
the properties of the shadow of the reflected wave. The part scattered by diffraction
is accounted for in both cases. Hence a perfectly absorbing wedge, when a geometrical
shadow exists, may be defined by saying that the reflected wave disappears.

When the wedge is perfectly reflecting, even if the incident wave does not possess
a geometrical shadow, there may be one or more geometrical shadows associated with
the reflected waves.

Hence the solution for perfect reflexion is that found by MacpoNaLp and Browm-
WICH, starting with the theory of images.

It must be remembered, however, that the problems to which the method of images
applies are isolated cases, and therefore to pass from them to diffraction, which has no
connexion with perfect reflexion, is really an analytical convenience.

In this paper we have not considered the general problem of diffraction but we have
endeavoured only to treat the wedge problem from a point of view which is free from
certain objections.

Difficulties in the general problem of absorption have been pointed out, and even
if we could deal with these difficulties the attempt would carry us beyond our present
intentions.

SUMMARY

Towards the end of last century and early in the present century the problem of the
diffraction of waves by a wedge attracted considerable attention among mathe-
maticians. The problem, in addition to its being attractive from the analytical stand-
point, is important from the physical point of view, and an attempt at its solution
by exact analysis naturally aroused attention as a means of verifying FRESNEL’S
celebrated theory.

The problem was finally solved by MacpoNALD in 1915 with an extension by
BromwicH. The former commences by obtaining GREEN’s function for a wedge,
while the latter takes the theory of images as his starting point. Some time previously
MacponaLp had propounded a theory of perfectly absorbing bodies, and when
attempting to fit this theory to the wedge problem the author of the present paper
was confronted with certain difficulties. Upon endeavouring to overcome these
difficulties it was found that there are objections to basing the solution upon a per-
fectly conducting wedge as is done by MacpoNarp and BromwicH, and it appeared
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to be a more fundamental and satisfactory process to base the solution upon the pro-
perties of the geometrical shadow.

This process has made it possible to obtain, by new and distinct methods, solutions
both for the point source and the incident plane wave, and it has also made it possible
to obtain the solution of a very interesting problem of diffraction in the presence of
total reflexion at the surface of separation of two media of different refractive indices.

These are the main problems dealt with in the paper, while in the final section there
is a discussion of the difficulties arising in MacpoNaLD’s theory of absorbing bodies.
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